话本小说网 > 幻想小说 > 数学使徒(MathematicalApostle)
本书标签: 幻想 

关于Jacobson猜想

数学使徒(MathematicalApostle)

Jacobson猜想原表述:对于一个左诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。

但1965年该表述被证伪,目前仍然open的是以下表述:

“对于一个双边诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。”

我对该猜想比较感兴趣。

刚翻到一篇有意思的文献,声称,如果幺环R满足如下条件之一,那么J^ω=0:

1、R是左主理想区且有一个左Motria对偶;

2、R是双边诺特环,且它作为自己的左模在离散拓扑下线性紧致。

参考文献:Claudia Menini,Jacobson’s Conjecture, Morita Duality

and Related Questions,Journal of Algebra 103, 638-655 (1986)

抽象代数环论

For a ring Rwith Jacobson radical J,the nonnegative powers Jⁿ are defined by using the product of ideals.

Jacobson's conjecture:lnaright-and-left Noetherian ring,∩Jⁿ={0}.

n∈ℕ

3. Sᴏᴍᴇ Fᴜʀᴛʜᴇʀ Rᴇsᴜʟᴛs

In this section we will get some more results about Jacobson's conjecture and we will show that, in some particular cases,it holds.

3.1. LEMMA. Let R be α ring,J=J(R),Jω=Jω(R). Suppose thαt ʀR is

I.c.d.αnd ʀJ is finitely generαted. Then

Jω=JωJ.

Proof.Let J=Rα₁+· · ·+ Rαₙ. For every left R-module M. let M⁽ⁿ⁾ denote the direct sum of n-copies of M. Define

f: ʀR⁽ⁿ⁾ → ʀR

by setting

(r₁,...,rₙ)f=r₁α₁+· · ·+rₙαₙ, r₁,...,rₙ∈R.

Then f is a morphism of left R-modules and

(∩(JᵏR⁽ⁿ⁾)f=((Jω)⁽ⁿ⁾)f=JωJ.

As ʀR is l.c.d.,by Satz 1 of [L] it is:

(∩(JᵏR⁽ⁿ⁾)f=∩((JᵏR⁽ⁿ⁾)f=Jω.

ₖ ₖ

3.2. Cᴏʀᴏʟʟᴀʀʏ. Let R be α ring,J=J(R), Jω=Jω(R).Assume thαt ʀR is I.c.d. αnd thαt both ʀJ αnd Jωʀ αre finitely generαted. Then Jω=0.

Proof. By Lemma 3.1 Jω=JωJ.Apply now Nakayama’s Lemma.

Recall that a ring R is said to have a left Moritα duαlity if both ʀR and the minimal cogenerator ʀK of R-Mod are l.c.d.

3.3. Remαrk. Corollary 3.2 holds in particular when R is a noetherian ring (on both sides) having a left Morita duality. This result has been already proved, in another way,in [J4].

3.4.Pʀᴏᴘᴏsɪᴏɴ. Let R be α ring J=J(R),Jω=Jω(R). Suppose thαt R is α locαl (i.e.,R/J is α diυision ring),J=Rz,ʀJω is finitely generαted αnd R hαs α left Moritα duαlity. Then there exists αn n∈ℕ such thαt JⁿJω=0.

Proof. Let ʀK be the minimal cogenerator of R-Mod and suppose that for every n∈ℕ,there exists

eₙ∈Ann ᴋ(JⁿJω)\Ann ᴋ(Jⁿ⁻¹Jω).

For every n∈ℕ let ēₙ=eₙ+Ann ᴋ(Jω)∈ K/Ann ᴋ(Jω).Then the elements ēₙ yield α bαsis for α free left R/Jω module. In fact note that JωJωeₙ=0 and assume that

∑ rₙēₙ=0 with rₙ∈R,rₜ ∉ Jω.

ₙ₌₁

Then rₜ eₜ ∈ Ann ᴋ(Jᵗ⁻¹Jω) and hence Jᵗ⁻¹ Jωrₜ eₜ =0.

Since rₜ ∉ Jω and R is local,there exist an l∈ℕ and an invertible element ε of R such that

rₜ=εzˡ.

Then Jωrₜ=Jωεzˡ=Jωzˡ and, by Proposition 3.1,Jωrₜ=Jω.Thus Jᵗ⁻¹Jωeₜ=0. Contradiction.

Since K/Ann ᴋ(Jω) is an l.c.d. left R-module this cannot happen. Hence there exists an n such that

Ann ᴋ(JⁿJω)=Ann ᴋ(Jⁿ⁺¹Jω).

652 ᴄʟᴀᴜᴅɪᴀ ᴍᴇɴɪɴɪ

Thus,as ʀK is a cogenerator of R-Mod,we get

JⁿJω=Jⁿ⁺¹Jω.

Nakayama’s Lemma implies that JⁿJω=0.

3.5. Cᴏʀᴏʟʟᴀʀʏ. Let R be α left principαl ideαl domαin with α left Moritα duαlity. Then Jω(R)=0.

Proof.As ʀR is l.c.d.,idempotents modulo the Jacobson radical lift. Thus,since R is a domain,R must be local.Apply now Proposition 3.4.

3.6. Remαrk. The ring R in 2.10 is a left principal ring.Thus 2.11 shows that the hypothesis “domain” in Corollary 3.5 cannot be omitied.

上一章 Mycielski定理 数学使徒(MathematicalApostle)最新章节 下一章 关于quantale