话本小说网 > 幻想小说 > 数学使徒(MathematicalApostle)
本书标签: 幻想 

第三篇章终极集合论宇宙(V=UltimateL)

数学使徒(MathematicalApostle)

终极集合论宇宙(V=UltimateL)

  TheMostowskiCollapse and the lnner Model

  program

  w.Hughwoodin

  usiversity of CaEtyaia BerLeley

  October 11.2013

  TheMostowskiCoollapse

  Theorcm

  Suppose Mis atransitivesetandΧ≺M.Tbenthereisa unique transitve set Nand isomorphism

  π:N≅Χ.

  ThegentrallIatiorsof the Mostowski Collapseareubiquitousin set Theory.

  The Universeofsets

  Thepowersct

  suppose Χ is a set 。The powerset of Χ is the set

  Р(X)={Y丨Y is a subset of Χ}. 

   CumuJativeHierarchyofScts TheunherseVofsetsisgeneratedbydeflningVαbyinductionontheordinalα:

  1.V₀=∅.

  2.Vα+1=Ρ(Vα).

  3.ifαisalimitordinalthenVα=Uᵦ<αVᵦ.

  ⇨EverysetbeloegstoVαforsomeordinalα.

  Logicaldefinabilityfromparameters

  BchedDooset

  SupposeΧisatransitiveset.AsubsetΥ⊆Χislogicallydeflnablein(Χ,∈)fromparmetersifforsomeformula φ[x₀……x₀]andforsomeparametersa₁……a₂∈Χ,

  Υ={a∈Χ丨(Χ,∈)╞ φ[a,a₁……a₀]}

  Thedefinablepowerset

  ForeachsetΧ,Рᴅel(Χ)denotesthesetofallΥ⊆ΧsuchthatΧislogicallydtfinableinthestructure(Χ,∈)fromparametersinΧ.

  ⇨(AxiomofChoice)Рᴅel(Χ)=Р(X)ifandonlyifΧisflnite。

  ⇨Рᴅel(Vᴊ+1)∩Р(R)isexactlytheprojectivesets.

  Theeffectivecumulativehierarchy:L

  Gōdd'sconstructibleuniverse.L

  DefineLαbyinductiononαasfollows.

  1.L₀=∅.

  2.(Successorcase)Lα+1=Рᴅel(Lα).

  3.(Limitcase)Lα=∪{Lᵦ丨β<α).

  ListheclassofallsetsΧsuchthatΧ∈Lαforsomeordinalα.

  Theorem(Gōdel)

  SupposeΧ≺Lα.Thenthereisauniqueordinalβand

  isomorphism

  π:Lᵦ≅Χ.

  Theorem(Scott)

  AssumeV=LSupposeMisatransitivesetandthat

  Χ≺M

  isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.

  AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.

  Χ≅Vα

  andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.

  ⇨TheseaxiocnsimplyV≠L.

  Stiongaxcmsofinfinity:largecardinalaxioms

  BzrJmpJateforlargecardinalaxioms

  Acardinalκisalargecardinalifthereexistsanelementaryembedding.

  j:V→M

  suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.

  ⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:

  ⇨simplestcaseiswhereκisameasurablecardinal.

  ⇨M=VcontradictstheAxiomofChoice.

  ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.

  ⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.

  Thehierarchyoflargecardinalaxioms-shortversion

  ⇨Thereisaproperclassofmeasurablecardinals.

  ⇨Thereisaproperclassofstrongcardinals.

  ⇨Thereisaproperclassofwoodincardinals.

  ⇨Thereisaproperclassofsuprstrongcardinals.

  …………………

  ⇨Thereisaproperclassofsupercompactcardinals.

  ⇨Thereaproperclassofextendiblecardinals.

  ⇨Thereaproperclassofhugecardinals.

  ⇨Thereaproperclassofw-hugecardinals.

  EnlargementsofL

  Deflnition

  SupposeEisaset(orclass).Then

  1.L₀[E]=∅.

  2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where

  Z=Lα[E]∪{E∩Lα[E]}.

  3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.

  ⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.

  ⇨lfE∩L=0thenL[E]=L

  ⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].

  ⇨ThisisequivalenttotheAxiomofChoice.

  Thebuildingblocksforinnermodels:Extenders

  supposethat

  j:V→M

  isarelementaryembeddingwithcniticalpointκ,κ<η.andthat

  Р(η)⊂M.

  The(strong)extcnderEoflengthηdcrivedfromj

  TheextenderEoflengthηdefinedfromjisthefunction:

  E:Р(η)→Р(η)

  whereE(A)=j(A)∩η.

  TwoordinalsassociatedtotheextenderE:

  ⇨CRT(E)=min{α丨E(α)≠α}=κ.

  ⇨LTH(E)=ηwheredocn(E)=Р(η).

  Largecardinalaxiomsintermsofextenders

  δ isastrongcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  CRT(E)=δandLTH(E)≥ γ.

  δisasupercompactcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  E(CRT(E))=δandLTH(E)≥γ.

  δisanextendiblecardinalif

  ⇨foreachγ>δ thereexistsanextenderEsuchthat

  CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).

  weakextendermodelsandextendermodels

  Foralargecardinalaxiom Φ:

  Deflnition

  AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat

  E=F丨N

  forsomeextenderF.

  ⇨lfΦholdsinVthenVisaweakextendermodelforΦ.

  Deflnition

  AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.

  ThelnnerModelprogram

  ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:

  Question

  Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?

  Theorem(Martin-Steel)

  Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.

  Theorem(Martin-Steel)

  SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.

  Beyondsuperstrong:theUniversalityTheorem

  Thcorem(UniversaΓtyTheorcm)

  SupposethatNisaweakextendermodelforδissupercompact.

  supposethatFisanextendersuchthat:

  ⇨CRT(F)≥δandNisclosedunderF.

  ThenF丨N∈N.

  ⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L

  ⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.

  Conclution

  TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel

  ⇨itmustyieldanultimateversionofL.

  Gödel’stransitiveclassHOD

  ⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.

  Deflnition

  Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:

  1.ΧisdefinableinVαfromordinalparameters.

  2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.

  ⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.

  OefinlenM(Gödel)

  HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.

  whatabutextendermodelsforsupercompactcardinals?

  Deflnition

  supposethatE=(Eα:α∈Ord)isasequence.

  ThenEisweakly∑₂-definableifthereisaformua φ(x)suchthatforallβ∈ord.

  ⇨for all β<η₁<η₂<η₃ .if

  (E)ᵛᵉˢ丨β=(E)ᵛᵉˢ丨β

  then(E)ᵛᵉ¹丨β=(E)ᵛᵉ²丨β=(E)ᵛᵉ³丨β.

  where(E)ᵛ⁷={a∈Vα丨Vγ╞φ [a]}.

  ⇨Thesequtnce(HOD∩Vα:α∈Ord)isweakly∑₂-dtfnable.

  Aseriousobstruction

  ⇨Assumethereisaproperclassofsupercompactcardinals

  Byclassforcingonecanarrangethatthefollowinghold

  1.V=HODandthereisaproperclassofsupercompactcardinals.

  2.SupposeEisanextendersequencesuchthat

  (a)L[E]isanextendermodelforδisasupercompact

  (b)Eisweakly∑₂-deflnable.

  ThenV⊆L[E].

  Ramiflcations

  RulesoutdeVelopingthelnnerModelprogramtothelevelofconstructingextendermodelsfor δ issupercompact.

  ⇨lnfactonecannotgobeyondtheMartin-Steelextendermodelsinanyessentialway.

  Рartial-extendersandpartial-extendermodels

  A partial-extender E of length η isobtainel from an elementary embedding.

  j:N→M

  whereN∩Р(η)=M∩Р(η):

  1.E has domain N∩P(η):

  2.E(A)=j(A)∩η.

  Deflnition

  AtransitiveclassNisapartial-extendermodelsequenceEofpartial-extenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbythe ∽₁:alextendersonthesequenceE.

  Goodpertial-extendermodels

  ⇨Eveyweakextendermodelcanbere-organiIedasapartial-extendermodel.therefore:

  ⇨ReguireagererakIationoftheMostowskiCollapse.

  Defmition

  SupposeL[E]isapartial-extendermodel.ThenL[E]ispartial-extendermodelifforall

η<α.if

  X≺(Lα[E].E∩Lα[E])

  istheelementarysubstructuregivenbytheelementswhicharedeflnablewithparametensfromηthen.

  Χ≅(Lᵦ[E].E∩Lᵦ[E])

  for some β.

  ⇨lfL[E]isagoodpartial-extendermodelthenthecontinuumHypothesisholdsinL[E].

  Mitchell-Steelmodels

  ⇨Thebasicframewcrkforgoodpartial-extendersmodelsforlargecardinalsuptothelevelofsuperstrongcardinalsoriginatesintheconstuctionsofMitchellandSteel.

  ⇨ThereisanimportantvaiationduetoJensenwhichisequivalentbutyiekjsmodelswithstrongercondensationproperties.

  Theeorem(MitchellSteeletal)

  Assumethereisaproperclassofwoodincardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofwoodincardinalssachthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Theorem(Mitchell-Steeletal)

  AssumetheltenationHypothesisandthatthereisaproperclassofsuperstrongcardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofsuperstrongcardinalssuchthat

  (1)Eisweakly∑₂-definable。

  (2)L[E]isagoodpartial-extendermodel.

  Conjecture

  AssumethelterationHypothesisandthatthereisanextendibiecardinal.Thenthereisapartial-extendermodelL[E]forasupercompactcardinalsuchthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Afirststep

  Theorem

  AssumethereisasupercompactcardinalandthatthelterationHypothesisholds.Thenthereisapartial-extendermodelL[E]suchthat

  (1)Eisweakly∑₂-deflnable。

  (2)L[E]isagoodpartial-extendermodel.

  (3)L[E]isaweakextendermodelfortheexistenceofκsuchthatκisκᵒⁿ-supercompactforalln<ω.

  ⇨Thetheoremshowsthattheobstructionscanbesuccessfullydealtwith.

  ⇨Theconstructionsseemtoindicatehowtohandlethegeneralcase.

  TheGeneric-Multiverse

  Definition

  SupposethatMisacountabletransitivesetandthat

  M╞ZFC.

  Thegeneric-multiversegeneratedbyMisthesmallestsetVᴍofcountabletransitivesetssuchthatforallpairs(N₀,N₁)ofcountabletransitivesetsif

  1.N₁isagenericextensionofN₀

  2.eitherN₀∈VᴍorN₁∈VᴍthenbothN₀∈VᴍandN₁∈Vᴍ.

  (meta)Definition

  TheGeneric-Multiverseisthegeneric-multiversegeneratedbyV.

  Mitchell-SteelmodelsandtheGeneric-Multiverse

  Lemma(V=L)

  VistheminimumuniverseoftheGeneric-Multiverse.

  Thcorem

  SupposeL[E]isan(iterable)Mitchell-Steelmodeland

  L[E]╞TbctelsawoodincardinΓ.

  ThenthereisaMitchell-SteelmodelL[F]⊂L[E]suchthatL[E]isageneΙcextensionofL[F].

  ThesametheoremappliestotheextensionofMitchell-Steelmodelsbeyondsuperstrong.

  lsUltimate-LageneralizedMitchell-Steelmodel?

  AssumetheHerationHypothesisholdsinVandthatthereisaproperclassofmeasurablewoodincardinals.

  ⇨ltisnotknownifthereexistsaMitchell-SteelmodelL[E]foraproperclassofmeasurablswoodincardinalswithinwhichEisdefinablecevenfromparameters).

  ⇨SupposeL[E]isaMitchell-Steelmodelwithinwhichthereexistsawoodincardinal.TheinductivefirstorderrequirementsonLα[E]arevtrycomplicated:

  ⇨thingsoelygetworseforthegentraliIedMitchel-Steelmodels.

  Twoquestions

  1.lsthereasimplecandidatefortheaxiomⅤ=Ultimate-L”?

  2.lsUltimate-Levenagoodpartial-extendermodel?

  UniversallyBairesets

  Definition(Feng-Magidoe-woodin)

  AsetA⊆RisuniversallyBaireifforalltopologicalspacesΩandforallcontinuousfunctions:Ω→R.thepreimageofAbyπhasthepropertyofBaireinthespaceΩ.

  ⇨UniversallyBairesetsareanabstractgeneraliIationoftheborelsets.

  Theorcm

  SupposethatthereisaproperclassofwoodincardinalsandthatA⊆RisuniversallyBaire.Theneveryset

  B∈L(A,R)∩Р(R)

  isuniversallyBaire.

  HODᴸ(ᴬᴿ)andlargecardinalaxioms

  Definition

  SupposethatA⊆RisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isthesupremumoftheordinalsαsuchthatthereisasurjection.π:R→α.suchthatπ∈L(A,R).

  ⇨Θᴸ(ᴬᴿ)isameasureofthecomplexityofA.

  Relnrme

  SupposethatthereisaproperclassofwoodincardinalsandthatAisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isawoodincardinalinHODᴸ(ᴬᴿ).

  HODᴸ(ᴬᴿ)andthelnnerModelprogram

  Theorcm(Steel)

  Supposethatthereisaproperclassofwoodincardinalsandletδ=Θᴸ(ᴿ).

  ThenHODᴸ(ᴿ)∩VδisaMitchell-Steelmodel.

  Theorcm

  Supposethatthereisaproperclassofwoodincardinals.

  ThenHODᴸ(ᴿ)isnotaMitchell-Steelmodel.

  Thereisanotherclassofsolutionstotheinnermodelproblemforlargecardinals.

  ⇨strategicpartial-extendermodels

  ⇨previouslyuhknown.

  TheaxiomforV=Ultimate-L

  (meta)Conjecture:TheaxiomforV=Ultimate-L

  ⇨Thereisastrongcardinalandaproperclassofwoodincardinals.

  ⇨Foreach∑₃-sentence φ,if φ holdsin V thenthereisauniversallyBairesetA⊆Rsuchthat

  HODᴸ(ᴬᴿ)∩VΘ╞φ

  where Θ=Θᴸ(ᴬᴿ).

  ⇨Theaxiomsettles(moduloaxiomsofinfinity)allsentencesaboutp(R)(andmuchmore)whichhavebeenshowntobeindependentbyCohen’smethod.

  Theorcm(V=Ultimate-L)

  TheComtinuumHypothesisholds。

  MoreconsequencesofV=Ultimate-L

  Theorem(V=Ultimate-L)

  Foreachcardinalκ.ifV[G]isaset-genericextensionofVthenthereexistsanelementaryembedding

  π:(H(κ¹))ᵛ→N

  u:kN+1(π,N)∈VandsuchthatN∈HODᵛ[ᶜ].

  corollary(V=Ultimate-L)

  V=HOD.

  corollary(V=Ultimate-L)

  Vistheminimumuniverse of the Generic-Multiverse.

上一章 特殊篇章世界基数(第二方案) 数学使徒(MathematicalApostle)最新章节 下一章 翻译版(第三章)终极集合论宇宙(V=UltimateL)